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A study is made of how active membrane proteins can modify the long wavelength mechanics of fluid
membranes. The activity of the proteins is modelled as disturbing the protein surroundings through nonlocal
force distributions of which a force-dipole distribution is the simplest example. An analytic expression describ-
ing how the activity modifies the force-balance equation for the membrane surface is obtained in the form of
a moment expansion of the force distribution. This expression allows for further studies of the consequences of
the activity for nonplanar membranes. In particular the active contributions to mechanical properties such as
tension and bending moments become apparent. It is also explained how the activity can induce a hydrody-
namic attraction between the active proteins in the membrane.
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I. INTRODUCTION

Biological membranes actively participate in many bio-
logical processes. They constantly exchange material with
their surroundings and they contain molecular machines that
consume free energy to perform different tasks �1�. Biologi-
cal membranes are therefore not just simple self-assembled
structures of lipids and proteins in thermal equilibrium, but
should be considered as nonequilibrium systems.

Micropipette experiments have been performed on lipid
model membranes with membrane proteins that actively
pump ions across the membrane �2,3�. They have demon-
strated that the activity of the pumps influence the mechani-
cal properties of the membrane. The membrane protein in-
vestigated in Ref. �2�, bacteriorhodopsin, was a light-driven
proton pump, while the protein studied in Ref. �3� was the
ATP-driven calcium pump Ca2+-ATPase. In both micropi-
pette experiments it was found that the membrane tension
was less sensitive to changes in the visible area of the mem-
brane when the pumps were active. This was interpreted as
the shape fluctuations of the membranes being enhanced by
the activity. Therefore the results were presented as increased
effective temperatures, which could be about two to three
times the values found when the micropipette experiments
were performed without the pumps being activated.

In Ref. �4� a theoretical model was proposed which ex-
plains the enhancement of the fluctuations as being a result
of the active proteins pushing on their surroundings. The
pushing was modelled in the simplest possible way, as a
force-dipole acting on the fluids surrounding the membrane.
A force monopole was excluded because it would require an
external source of force in the system. Completing the model
by setting up stochastic equations of motion for the mem-
brane shape to first order in deviations from a planar mem-
brane, including an averaged contribution of the active force-
dipoles together with thermal noise in the description, it was
shown that this model provides a possible explanation of the
enhancement of the fluctuations. However, as noted in Ref.

�5�, the nonthermal noise from the activity may also contrib-
ute to the enhancement of the fluctuations.

To test the force-dipole model more stringently it would
be necessary to perform other experiments on these active
membrane systems. One possibility would be to measure the
fluctuation spectrum directly using video microscopy as pro-
posed in Ref. �6�. Another possibility would be to study how
the activity modifies the overall average shape of the mem-
brane. For lipid membranes in equilibrium this shape is well
studied both theoretically and experimentally, see, for in-
stance, Ref. �7� for a review. A way to make the average
shape sensitive to switching on activity would be to prepare
the membrane in a state where a small change in control
parameters, such as temperature or osmolarity, will result in
a sharp transition in shape, for instance, from a prolate to an
oblate �24�.

To find the predictions of the force-dipole model for such
experiments it would be beneficial to be able to work ana-
lytically with the model for membrane conformations that
are not close to being planar. However, as the force-dipole
model was formulated in Ref. �4�, this is not easy to do
directly, because the equations of motion for the surrounding
bulk fluids would then have to be solved in these nonplanar
geometries including the presence of the force dipoles.

The purpose of the present paper is to show how this
difficulty can be avoided by using a more indirect approach
where the formalism developed in Ref. �8� is applied. The
idea behind this approach is to develop an idealized math-
ematical formulation of the force-dipole model where all ef-
fects related to the presence of the membrane are assigned to
an infinitely thin surface. The space around this surface is
filled with the bulk fluids and excess quantities are then at-
tributed to the surface such that the amounts of extensive
quantities like energy, momentum, number of molecules,
etc., are conserved. This idealized formulation will also be
called the Gibbs formulation of the model, since the philoso-
phy behind it, applied to a nonequilibrium situation here, is
the one that Gibbs developed to treat the thermodynamics of
interfaces �9�. For the force-dipole model the most important
adjustment needed to arrive at its Gibbs formulation is to
replace the nonlocal contribution of the force dipoles in the
bulk fluid momentum conservation laws with an excess cur-*Electronic address: mlomholt@memphys.sdu.dk
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rent of momentum on the membrane surface.
The outline of the presentation of this approach is as fol-

lows. We will give a brief review of differential geometry of
surfaces in Sec. II to establish the notation. Then we will
continue with formulating a generalized version of the force-
dipole model of Ref. �4� in Sec. III. This formulation of the
model will be called the semimicroscopic formulation. Mi-
croscopic, because molecular length scales enter directly,
namely the lengths over which the forces are distributed.
Semi is added in front because, apart from these activity
induced forces, the membrane is treated as being infinitely
thin. In Sec. IV we then show how an expansion can be
performed in these molecular length scales divided by the
curvature radii of the membrane to arrive at the Gibbs for-
mulation for the model. In the Gibbs formulation some of the
physical consequences of the force-dipole model become
clearer than in the semimicroscopic formulation. One of
these consequences is an influence of the activity on the ten-
sion of the membrane, which is discussed in Sec. V. Another
consequence of the force-dipole model, discussed in Sec. VI,
is a hydrodynamic interaction force between the membrane
proteins induced by the activity, offering a possible explana-
tion of two experiments reported in Ref. �10� on the cluster-
ing and diffusion of active bacteriorhodopsin molecules. A
conclusion is given in Sec. VII, and finally an Appendix is
added where the bulk hydrodynamics is solved directly for
the semimicroscopic formulation in the case of a nearly pla-
nar membrane. Comparing this solution with the Gibbs for-
mulation derived in Sec. IV it can be seen directly that the
Gibbs formulation and semimicroscopic formulation are
equivalent in this case.

The Gibbs formulation derived here will be applied in
another paper �11�, where the fluctuation spectrum of a qua-
sispherical vesicle with active proteins acting as force di-
poles is derived.

II. BRIEF REVIEW OF DIFFERENTIAL
GEOMETRY OF SURFACES

In this section we briefly review the mathematical lan-
guage of two-dimensional differential geometry, which will
be used throughout the rest of the paper.

The dynamic shape of the surface is represented by a
space-vector function R=R��1 ,�2 , t�, where the variables �1

and �2 parametrize the surface and t represents time. At each
point on the membrane surface we have a basis for three-
dimensional vectors consisting of two tangential vectors,

t� � ��R �
�R

��� , �1�

where �=1,2, and a unit vector normal to the surface,

n �
t1 � t2

�t1 � t2�
. �2�

The metric tensor of the surface is defined by

g�� � t� · t�. �3�

It has an inverse, g��, which satisfies

g��g�� = ��
�, �4�

where ��
� is the Kronecker delta and where the repeated

Greek superscript-subscript indices imply summation follow-
ing the Einstein summation convention. The metric tensor
and its inverse are used to raise and lower Greek indices as in
the following example:

t� = g��t�, t� = g��t�. �5�

The curvature tensor K�� is

K�� = n · ����R . �6�

From K�� the scalar mean curvature H and Gaussian curva-
ture K can be obtained:

H =
1

2
g��K��, �7�

K = detg��K��. �8�

The expression for covariant differentiation of for in-
stance a vector w=w�t� is given by

D�w� = ��w� + w����
� , �9�

where the Christoffel symbols are defined as

���
� =

1

2
g�����g�� + ��g�� − ��g��� . �10�

Finally, the area of a local differential element of the sur-
face is given by

dA = �gd�1d�2, �11�

where g=detg�� is the determinant of the metric tensor.

III. SEMIMICROSCOPIC FORMULATION

The force-dipole model proposed in Ref. �4� states that
the important contribution of the activity of the active mem-
brane proteins to the mechanics and dynamics of the mem-
brane shape is that the proteins push on the surrounding bulk
fluids. Mathematically, this was formulated by the addition
of a source of force Fact in the equations of motion of the
bulk fluids. Due to the microscopic size of lipid-protein
membranes we will assume that we are at low Reynolds
number where these equations become

	�2v± − �p± + Fact
± = 0, �12�

supplemented by the incompressibility condition

� · v± = 0. �13�

Here v±=v±�r , t� are the velocities of the bulk fluid at posi-
tion r and time t on the side that n points into �+� and the
other side �−� of the membrane, p±= p±�r , t� are the corre-
sponding pressures, Fact

± =Fact
± �r , t� are the appropriate restric-

tions of the active force density Fact to the ± side of the
membrane and 	 is the viscosity of the fluids.

The specific expression for Fact will be generalized
slightly here compared with Ref. �4�. We will write it as
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Fact�r� = �
M

dA� dhFactn�3�r − �R + hn�� . �14�

The first integral in Eq. �14� is over the area of the membrane
M, and the second integral is along the normal direction to
the membrane with h being the distance to the membrane
surface. Together with the delta function these integrals can
be thought of as a conversion of coordinates from the Carte-
sian position vector r to the membrane related coordinates
��1 ,�2 ,h�. Fact will be taken to be an arbitrary function of h
and fields on the membrane, say Fact=Fact�h ,H ,np+ ,np−�, and
it therefore depends implicitly on ��1 ,�2� and t. np± represent
area densities of the active proteins in the membrane, with +
and − indicating the two possible orientations of an asym-
metric transmembrane protein which is incorporated in a
membrane.

We can at any point specialize to the more specific force-
dipole model of Ref. �4� by taking

Fact = �Fan
 + 2HFa�n�����h − w↑� − ��h + w↓�� , �15�

where Fa and Fa� are constants representing the strength of
the active forces and their curvature dependence, w↑ and w↓

are constant lengths giving the distances from the membrane
where the forces act. For the protein densities we have intro-
duced n�=np+ +np− and n
=np+ −np−.

At this point it should be pointed out that there is a prob-
lem with Eq. �15�: it is not invariant with respect to exchang-
ing the two sides of the membrane �see Fig. 1�. If locally the
physical situation is symmetric with respect to this exchange,
i.e., n
=0 and the membrane is planar, then the equation
should be invariant with respect to exchanging the two sides.
As also noted in Ref. �12�, this problem can be resolved by
using instead the symmetric dipole model,

Fact = �Fa + 2HFa��np+���h − w↑� − ��h + w↓��

+ �Fa − 2HFa��np−���h − w↓� − ��h + w↑�� . �16�

In Sec. V we will discuss what the difference is in the con-
sequences of the two specific models, Eqs. �15� and �16�, for
the mechanics of the membrane.

In the Navier-Stokes equation �12� Fact acts as a local
source term for momentum. Globally, however, there can be
no production of momentum. Or equivalently, formulated as

in Newton’s third law, for every force there has to be an
equal but opposite counterforce. This condition will be en-
sured by assuming that

� dhFact = 0. �17�

To complete the description of the bulk hydrodynamics
we need to supplement Eqs. �12� and �13� with boundary
conditions on the velocities v± at the membrane position R
and at the boundaries of the full membrane-bulk fluid sys-
tem. We will not choose any specific boundary conditions
here, but for later use we will introduce the following nota-
tion for the boundary conditions at the membrane:

v±�r=R = U±, �18�

where U±=U±��1 ,�2 , t� are unspecified.
Equations �12� and �13� can be solved for the case of an

almost planar membrane, expanding to first order in devia-
tions of the membrane shape from a plane. This is carried out
in the Appendix of this paper. It was also carried out in a
different manner in Ref. �4�, where the result was used to
explain data obtained from micropipette experiments on ac-
tive membranes. However, the large scale geometry of the
membranes in micropipette experiments are not planar.
Treating them as planar is an approximation justified for
studying membrane undulations with short wavelengths
compared to the typical length scales of the overall mem-
brane geometry. For the case of micropipette experiments it
is sufficient to know the behavior of the short wavelength
undulations because the long wavelength undulations are
suppressed by the tension that is induced when the mem-
brane is aspirated to the pipette. But as explained in the
Introduction there are situations where it is useful to know
the behavior of the long wavelength undulations or the over-
all geometry of the membrane shape. The problem with the
semimicroscopic formulation is that directly solving the bulk
fluid hydrodynamics analytically for this formulation seems
to be quite difficult, if not impossible, for a typical mem-
brane geometry like one being close to a sphere. In the next
section we will show how this problem can be circumvented
by a more indirect approach to the problem.

IV. GIBBS FORMULATION

In this section we will derive the Gibbs formulation cor-
responding to the semimicroscopic formulation of the gener-
alized force-dipole model of the last section.

The designation Gibbs formulation will in this context be
taken to mean a mathematical model of the membrane sys-
tem in which the membrane is treated entirely as being a
surface with zero thickness. The semimicroscopic formula-
tion of the generalized force-dipole model in the last section
is not a Gibbs formulation, because the active membrane
proteins are acting with forces in the bulk fluids across a
finite distance transverse to the membrane. Thus in the cor-
responding Gibbs formulation these active forces will have
to be absent from the bulk fluid equations of motion, i.e.,
instead of Eq. �12� we would have

FIG. 1. Illustration of the points of action and directions of the
forces in the force distributions of Eqs. �15� and �16�.
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	�2v± − �p± = 0, �19�

and the effect of the active forces will have to be present in
the equations of motion for the membrane surface and the
boundary conditions for the bulk fluids instead.

One of the equations of motion for the membrane surface
is the conservation of excess momentum. At low Reynolds
number where inertial and convective terms can be discarded
this law becomes a force balance equation, which can be
written �25�

frs + fdis + T+ + T− + fact = 0. �20�

Here frs is the elastic restoring force of the membrane deriv-
able from the membrane excess free energy F by functional
differentiation �8�

frs = −
1
�g

�F

�R
. �21�

The free energy for a lipid membrane should include terms
representing bending resistance and tension,

F = �
M

dA�2�H2 + 0 + ¯ � , �22�

where � is the bending rigidity, 0 a tension and the dots
represent terms involving free energy variations with respect
to changes in other fields such as the density fields np±. The
force fdis is associated with internal dissipation in the mem-
brane. However, this dissipative force is often taken to be
negligible in comparison with the dissipation in the bulk flu-
ids because of small thickness of the membrane. Instead dis-
sipation enters through T±, which are the forces from the
bulk fluids on the membrane. Given that the stress tensors of
the bulk fluids are

T± = − p±I + 	��v± + ��v±�T� , �23�

where I is the identity tensor, we can find T± as

T± = ± n · T±. �24�

The main character in this paper is fact, which is the force on
the membrane induced by the activity of the membrane pro-
teins. Note that the force balance equation for the membrane
in the semimicroscopic formulation would be Eq. �20� with-
out fact, because in this formulation the activity induced force
is included through T±. Thus in the semimicroscopic formu-
lation the forces acting directly on the membrane is the same
as those included in earlier formalistic works like, for in-
stance, Refs. �13,14�.

Figuring out what the force fact is in the Gibbs formulation
is, however, not trivial. A priori fact can be divided into two
contributions

fact = �act + D�Tact
� , �25�

where �act is the excess source of force per area due to the
activity and Tact

� is the excess stress induced by the activity.
�act can be found by projecting the volume integral of Fact
down to an area integral on the membrane surface giving

�act =� dh�1 − 2hH + h2K�Fact, �26�

since the volume element can be written dV= �1−2hH
+h2K�dAdh. However, as a consequence of Eq. �17�, there is
no excess source of momentum

�act = 0 . �27�

This leaves us with Tact
� , which can be found by requiring

that the stress on surfaces intersecting the membrane or-
thogonally is the same in the semimicroscopic formulation
and the Gibbs formulation. This implies �15�

Tact
� =� dh�g�� − h�2Hg�� − K����t� · Tact, �28�

where Tact is the bulk fluid stress induced by the activity of
the membrane proteins. More precisely, Tact is the bulk fluid
stress tensor in the semimicroscopic formulation minus the
bulk fluid stress tensor in the corresponding Gibbs formula-
tion, with the boundary conditions for Eqs. �12� and �19�
chosen such that the solutions for the bulk fluid motion are
identical �for identical membrane shapes and protein density
fields� in the two formulations at distances from the mem-
brane greater than those connected with the activity induced
forces �8�.

It may seem that to find Tact
� as a function of the fields on

the membrane we still need to work out the hydrodynamics
in the semimicroscopic formulation completely. However, if
we do not insist on obtaining the exact formula for Tact

� , we
can obtain an answer as a moment expansion of Fact in the
distance h from the membrane in a simpler way.

The strategy we will follow is to work out the formula for
the moment expansion of Tact

� up to the second moment in a
special case, and then use a combination of symmetry argu-
ments and dimensional analysis to argue that the formula
obtained in the special case is actually the general formula.
We will also use the linearity of the problem to divide the
force Fact into infinitesimal contributions of the form

Fact,h = dh�
M

dAFactn�3�r − �R + hn�� , �29�

where dh should be understood as an infinitesimal length.
Then we can find the corresponding contribution Tact,h

� to Tact
�

for each of these, and the full result is obtained by perform-
ing an integral over h in the end.

The special case we will study is that of a homogeneous
membrane with constant curvature, such that np±, H, and K
are constant and D�K��=0. Examples of such geometrical
surfaces would be planes, cylinders, and spheres. The bound-
ary condition for the Navier-Stokes equation �12� is chosen
to be that the velocity should vanish at the position of the
membrane.

The solution to the hydrodynamics in this special case
will simply be that the bulk fluid will not move, v±=0, but
there will be a jump in the pressure at a distance h from the
membrane to balance the active force. The discontinuous
jump for a planar membrane will be Factdh, with the lower
pressure close to the membrane if Factn points away from the
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membrane. If the membrane is curved with constant curva-
ture, then the force acting at the distance h will be changed
slightly, due to the fact that the area of the surface at the
distance h differs from the membrane area �see Fig. 2�. To
first order in h we will have a jump in the pressure which is
given by


ph
± = 	��1 + 2Hh + O�h2��Factdh , ± h � 0,

0 ± h � 0.
�30�

This is the change in pressure between the membrane and the
distance h induced by the active force Fact,h. From Eq. �28�
we have that the corresponding excess stress Tact,h

� is

Tact,h
� =� dh��g�� − h��2Hg�� − K����t� · Tact,h, �31�

where Tact,h is equal to −
ph
± times the identity for values of

h� between 0 and h, and zero otherwise. Performing the in-
tegration over h� we get to second order in h for the tangen-
tial part Tact,h

�� =Tact,h
� · t�,

Tact,h
�� = Facthdhg�� + 
Hg�� +

1

2
K���Facth

2dh . �32�

Finally, performing the integral over h we arrive at

Tact
�� = Tact

� · t� = dipg
�� + 
Hg�� +

1

2
K���Q , �33�

where

dip =� dhhFact, �34�

Q =� dhh2Fact, �35�

are the dipole and quadrupole moment of the force distribu-
tion Fact.

Even though formula �33� was derived for homogeneous
membranes with constant curvature, it has to be true for any
geometry and distribution of active protein molecules, as
long as the geometry and distribution are smooth enough
such that we can expand Tact

�� in curvature and gradient op-

erators. This is true because other contributions will have to
involve the gradient operators. And since we are building a
second-rank tensor, there will have to be at least two of them
�the only vectors we can use are the gradients of the force
distribution and the curvature�. From dimensional analysis
we can then see that the lowest order quantity we can build
using gradient operators involves the gradient used twice on
the third moment of Fact, which is one order higher than what
we are expanding to.

The above symmetry argument also tells us that we can-
not derive the normal component Tn,act

� =Tact
� ·n directly by

using a homogeneous membrane, since there will have to be
at least one gradient in the formula for Tn,act

� to end up with a
surface vector. However, there is another way, which goes
via obtaining a general formula for the bending moments,
Mact

��, arising due to the activity. These bending moments are
defined such R�Tact

� +Mact
��n� t� is minus the nonconvective

part of the excess angular momentum flow induced by the
activity, i.e., Mact

�� is related to the activity induced internal
angular momentum current in the Gibbs formulation. By re-
quiring that the angular momentum flow through surfaces
intersecting the membrane orthogonally is the same in the
semimicroscopic formulation and the Gibbs formulation one
can derive that �15�

Mact
�� =� dh�h��g�� − h��2Hg�� − K����t� · Tact · t�.

�36�

Since there is no excess source of torque in the system, we
will have that the internal torque in the membrane vanishes.
The excess internal torque is the excess torque on the mem-
brane minus the torque of the excess force on the membrane
�15�, i.e., its activity induced part is

D��R � Tact
� + Mact

��n � t�� − R � fact. �37�

The balancing of torques in both the semimicroscopic formu-
lation and the Gibbs formulation implies that the activity
induced part of the internal torque vanishes by itself. Equat-
ing the tangential part of Eq. �37� by zero we find that the
bending moments are related to the normal component of the
stress by the formula

Tn,act
� = D�Mact

��. �38�

Inserting the solution for Tact,h for the homogeneous mem-
brane case in Eq. �36� and integrating with respect to both h
and h�, we obtain

Mact
�� =

1

2
Qg��. �39�

Since the bending moments again form a second rank tensor
we can use the same symmetry argument as for Tact

�� to argue
that Eq. �39� is the general formula for Mact

��, and we thus
have the desired formula

FIG. 2. Illustration of considerations leading to Eq. �30�. Note
that H is negative.
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Tn,act
� =

1

2
��Q , �40�

correct to the second moment of Fact for any smooth mem-
brane composition and shape.

As briefly touched upon after Eq. �28�, we need to have a
boundary condition for the bulk fluid in the Gibbs formula-
tion that ensures that we get the same behavior of the bulk
fluid far away from the membrane as in the semimicroscopic
formulation �8�.

To find the boundary condition in the Gibbs formulation,
we will again study a special case in the semimicroscopic
formulation. This time the special case will be a planar mem-
brane positioned at z=0 in a Cartesian coordinate system,
�x ,y ,z�, but with an inhomogeneous distribution of active
proteins, such that the force obeys Factdh=Cx with C being
independent of x and y. For the case of a boundary condition
where the velocity vanishes at the membrane we can now
solve Eq. �12� when Fact is restricted to Fact,h. For the upper
part of the bulk fluid a solution is that p+ and v+ are constant
outside h and for z�h they are

p+ = const − Cx , �41�

v+ = −
C

2	
z�z − 2h�x̂ . �42�

This implies, due to the continuity of v+ at z=h, that in the
rest of the bulk we will have

v+ =
C

2	
h2x̂ . �43�

The parametrization invariant boundary condition in the
Gibbs formulation that agrees with Eqs. �43� and �18� is

v±�r=R = U± ±
1

2	
t�D�Q±, �44�

where

Q± = ± �
0

±�

dhh2Fact. �45�

Again we can use symmetry arguments and dimensional
analysis to justify that Eq. �44� is the general formula for the
boundary condition up to the second moment of Fact true for
any smooth configuration of the membrane.

Even though the modification of the boundary condition
in Eq. �44� is a strict consequence of the generalized force-
dipole model formulated in Sec. III, one can argue that for
some proteins it is an anomaly arising because the model is
too simplistic. In the case of for instance bacteriorhodopsin,
we have that the physical extension of the proteins outside
the width of the lipid membrane is limited �16�. In this case
it seems reasonable that an improvement of the Gibbs for-
mulation would be to discard the modification in Eq. �44�
and use the original Eq. �18� instead. Whether or not the
same argument can be used to question how realistic is the
modification of the membrane force-balance coming from
the force-dipole model, fact in Eq. �20�, relies on how close

the mechanical properties of the lipids in the membrane re-
semble those of an incompressible fluid. We will not try to
resolve this here.

It was mentioned at the end of Sec. III that bulk fluid
hydrodynamics in the semimicroscopic formulation can be
solved directly for an almost planar membrane. As a check of
the correctness of the Gibbs formulation derived in this sec-
tion, this solution is presented in the Appendix . The result-
ing modification of the force balance equation for the mem-
brane that the active proteins are found to induce are in
complete agreement with the results derived in this section.

The momentum conservation law is not necessarily the
only conservation law in the Gibbs formulation that is modi-
fied through the activity of the proteins. A possible mecha-
nism through which the active proteins can attract each other,
leading to modification of their diffusion equations is dis-
cussed in Sec. VI.

V. MODIFICATION OF THE TENSION

Some of the consequences of the force-dipole model for
the mechanics of the membrane emerges readily in the Gibbs
formulation. In this section we will discuss the effect of the
dipole moment dip on the tension of the membrane.

From Eqs. �33� and �40� we see that dip only contributes
to the isotropic part of the tangential stress in the membrane.
This part is a two-dimensional analog of pressure in three
dimensions �15,17,18�, but due to the difference in sign it is
called tension. Thus the role of the dipole moment dip is
exactly that of adding a local contribution to the tension of
the membrane.

For the specific dipole model of Ref. �4�, Eq. �15�, the
active contribution is

dip = �w↑ + w↓��Fan
 + 2HFa�n�� . �46�

If n
=0 and the membrane is planar, which they actually go
to some length to make certain are reasonable assumptions in
the micropipette experiments of Ref. �2�, then the prediction
of Eq. �46� is that dip=0 on average. However, as men-
tioned in Sec. III, the specific model of Eq. �15� is not real-
istic because it does not respect the symmetry of exchanging
the two sides of the membrane, which should be there when
n
=0 and H=0. Therefore we will instead use the expression
for dip that one obtains from the symmetric model of Eq.
�16�, which is

dip = �w↑ + w↓��Fan� + 2HFa�n
� . �47�

It should be mentioned that even though the expression
for the active contribution to the tension is different for the
two dipole models, their predictions for the effective tem-
perature in the micropipette experiments are the same. This
is the case because the tension is fixed in the micropipette
experiments by other control parameters such as pressures,
and because the expression for the other parameter contrib-
uting to the mechanics, the quadrupole moment:

Q = ��w↑�2 − �w↓�2��Fan
 + 2HFa�n�� , �48�

is identical for the two models.
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To give an estimate of the active contribution to the ten-
sion, Eq. �47�, we will use an estimate of a quantity Pa made
in Ref. �4�, which was found to agree well with the micropi-
pette experiments on bacteriorhodopsin. The quantity is de-
fined as

Pa � Fa
�w↑�2 − �w↓�2

2w
, �49�

where w�5 nm is the membrane thickness, and the estimate
is

Pa � 10kBT . �50�

Making the assumption w↑−w↓�w /2 we get

Fa�w↑ + w↓� =
2wPa

w↑ − w↓ � 40kBT � 1.6 � 10−19 J. �51�

In Ref. �4� they achieve concentrations around n�

=1016 m−2. Multiplying this number with the one from Eq.
�51� we find an estimate for the tension,

dip � Fa�w↑ + w↓�n� � 1.6 � 10−3 N/m. �52�

If the membrane is in a floppy state with a large excess of
area stored in the fluctuations of its shape, which would for
instance be the case if the fluctuations of the membrane were
to be measured in a video microscopy experiment, then the
membrane can contract its area in response to the increased
tension. Thus the true increase in tension will not be as high
as indicated by Eq. �52� in that case. Assuming that almost
all of the active contribution to the tension is canceled by a
contraction we can estimate the relative change in area by

�=−dip /Ka, where Ka is the membrane expansion modu-
lus. A typical value for Ka would be Ka=0.2 N/m �19�. Us-
ing the tension from Eq. �52�, we then get a relative decrease
in area of around 0.8%. To estimate the small part of the
active contribution to the tension which is not canceled we
assume that we have a nearly planar membrane sitting on a
frame of area A0. Expanding the free energy in Eq. �22�,
assuming that the fields contributing the terms indicated by
dots have already been integrated out, to second order in
deviations �=��x ,y� from a planar shape one can find using
the equipartition theorem that the fluctuation spectrum of the
membrane is

��q�2� = A0
kBT

�q4 + 0q2 , �53�

where �q=�dxdyei�qxx+qyy���x ,y� and q=�qx
2+qy

2. The excess
of area stored in these fluctuations can then be calculated as

� =
1

A0
� dxdy�����2/2� =

1

A0
�

0

qmax qdq

2�

q2

2
��q�2�

=
kBT

8��
ln

�qmax
2 + 0

0
� −

kBT

8��
ln

0

�qmax
2 , �54�

where ��= t��� and qmax is a cutoff at high wave numbers
where the free energy in Eq. �22� is not expected to be valid
anymore. A cutoff at small wave numbers is not necessary

due to the suppression of the fluctuations by the tension
there. Equation �54� can be used to obtain � from micropi-
pette experiments by measuring the relative excess area as
the tension is changed. In Ref. �2� this was used to obtain the
value ��10kBT for the bending rigidity of a passive lipid-
bacteriorhodopsin membrane. When the bacteriorhodopsin
molecules were activated by shinning green-yellow light on
the membrane then it was found that the change in relative
excess area with tension now behaved as


� = −
kBTeff

8��
ln

final

initial
, �55�

where the effective temperature introduced here was mea-
sured to be Teff�2T. Isolating the tensions we find from Eq.
�55� that a 0.8% decrease in the excess area corresponds to
an increase in tension by a factor

final

initial
� exp�0.008 � 8� � 10/2� � 3. �56�

Thus if the initial tension is much smaller than dip then the
assumption that almost all of the active contribution is can-
celed by the contraction of the membrane area is not violated
by this factor 3 increase of the initial tension.

Note that the assumption w↑−w↓�w /2 is a conservative
estimate, meaning that if the dipole model in Eq. �16� is
appropriate and if Pa has the value given in Eq. �50�, then
the estimate in Eq. �51� is a lower bound on the dipole mo-
ment of the individual active proteins. However, if the lower
bound is contradicted by experiment, the force-dipole in Eq.
�16� could be replaced with a more complex force distribu-
tion giving a smaller dipole moment but the same quadrupole
moment.

VI. HYDRODYNAMIC INTERACTION
BETWEEN ACTIVE PROTEINS

As mentioned in the introduction, two experiments on the
diffusion dynamics and the interactions of bacteriorhodopsin
molecules in their passive and active states were reported in
Ref. �10�. The experiments showed that the diffusion of the
bacteriorhodopsin molecules slows down when they are ac-
tivated, and that the bacteriorhodopsin molecules tend to
cluster more in their active state. Both of these effects can be
explained by an attractive force between the bacteriorhodop-
sin molecules arising in the active state.

A possible mechanism through which this attraction can
take place is a coupling between bulk fluid pressure and dif-
fusion currents in the membrane which was also discussed in
Ref. �8�. One way to state this mechanism is that there
should be a term in the chemical potential of the membrane
proteins which is the pressure of the surrounding bulk fluid
times the volume of the protein. Thus when the activity of a
protein lowers the pressure in its surroundings, Eq. �30�, the
chemical potential of other molecules in its vicinity will be
lowered and therefore there will be an attractive force toward
the active protein through this mechanism. However, the lip-
ids in the membrane will also be attracted, and thus a coun-
terpressure will arise inside the membrane opposing the at-
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traction. But if the proteins stick out of the membrane they
will still feel a net attractive potential equal to the lowering
of the surrounding pressure times the volume of the part of
the protein which is outside the average lipid thickness of the
membrane.

To give a rough estimate of the importance of this attrac-
tive mechanism, we can compare it with the entropic repul-
sion of the proteins. Ignoring that proteins can insert them-
selves with two possible orientations in the membrane we
can take the chemical potential of the proteins to be

�p = kBT ln np + p
V , �57�

where 
V is the volume of the part of the protein which is
outside the lipid part of the membrane and p is the pressure
of the bulk fluid next to the membrane. Taking the membrane
to be planar we get from Eqs. �30� and �16� that p= p0
−Fanp where p0 is the pressure in the absence of activity,
which we will take to be a constant. Working to first order in
deviations from the homogeneous distribution of proteins,
we can write the constitutive relation for diffusion as �8�

�n

�t
� D���p�

��p� � DpD���np, �58�

where �p is a kinetic coefficient for protein diffusion and

Dp = �p
 kBT

np
− Fa
V� �59�

is the corresponding diffusion constant. Thus to estimate the
importance of the active contribution relative to the entropic,
we can compare the two terms in the parentheses in Eq. �59�.
Reusing the protein density np�1016 m−2 we find

kBT

np
� 100 nm2 · kBT . �60�

According to Ref. �16� the parts of a bacteriorhodopsin mol-
ecule extending into the aqueous surroundings are limited.
Let us, however, say that these parts extend approximately
1 nm out. Assuming that the cross-sectional area is approxi-
mately �5 nm�2 we get a volume of approximately 
V
�25 nm3. To estimate Fa we can use the estimate in Eq. �51�
and set w↑+w↓�5 nm. Doing this we get

Fa
V �
40kBT

5 nm
� 25 nm3 = 200 nm2 · kBT . �61�

The lesson that we can take from the above estimate is
that this force-dipole induced hydrodynamic attraction can
matter for the clustering and diffusion of bacteriorhodopsin
molecules. Working out the importance of this mechanism
more precisely is difficult, because it would require knowl-
edge of what additional forces, for instance membrane in-
duced interactions �20�, there is between the proteins besides
the active and entropic contributions. In the case of bacteri-
orhodopsin there has to be additional attractive forces, since
it is known that bacteriorhodopsin molecules also form clus-
ters in their passive state �10,21�.

It should be mentioned that there is also mechanisms that
can actively enhance diffusion. Rotating motors for instance
enhance the fluctuations in the local flow around them creat-
ing an active contribution to diffusion �22�.

VII. CONCLUSION

In this paper the force-dipole model of Ref. �4� was gen-
eralized to arbitrary distributions of forces in the direction
transverse to the membrane. The model was then reformu-
lated into a Gibbs formulation, where the activity entered the
force-balance equation of the membrane surface directly, in-
stead of being part of the force-balance in the bulk fluids
surrounding the membrane. An expression for the active con-
tribution to the force-balance in the Gibbs formulation, fact
=D��Tact

��t�+Tn,act
� n�, was given through Eqs. �33� and �40� in

the form of a moment expansion of the active force distribu-
tion Fact. This expression provides a way to study the conse-
quences of the force-dipole model of Ref. �4� for nonplanar
membrane shapes, opening up the possibility of testing the
model in a wider class of experiments than theoretical pre-
dictions restricted to planar membranes would allow for.
Some consequences of the activity, however, become imme-
diately apparent in the Gibbs formulation. One is that the
dipole moment of the active force distribution dip gives rise
to a modification of the tension of the membrane. The promi-
nent effect of the next order in the moment expansion, the
quadrupole moment Q, is that it modifies the bending mo-
ments of the membrane. The term in the force balance of the
membrane that this results in couples the dynamics of the
membrane shape to the protein concentrations, and this term,
if the force-dipole model is a proper explanation for the ac-
tivity induced effect observed in the micropipette experi-
ments �2,3�, induces a magnification of primarily the bending
rigidity dominated part of fluctuation spectrum �4�, i.e., the
q−4 behavior of Eq. �53�. It should be noted that this modi-
fication of the fluctuation spectrum does not correspond sim-
ply to a renormalized bending rigidity or a modification of
another coupling parameter from the equilibrium free energy.
The reason behind this is that the activity does not produce
symmetric couplings between the dynamics of the membrane
shape and the protein densities. The coupling constants in the
free energy produce such symmetric couplings because of
Maxwell relations and Onsager’s reciprocal relations.

The results obtained in this paper are for a model of the
activity that generalizes the force-dipole model of Ref. �4�. If
one wants to reduce the equations describing the membrane
dynamics here to those of Ref. �4� one first of all needs to
specialize to the force distribution given by Eq. �15� �26�.
Second, one has to go to the planar case. Third, thermal noise
should be included in the Navier-Stokes equation, Eqs. �12�
or �19� depending on which formulation one begins with.
Note that nonthermal noise arising due to the activity is not
included in Ref. �4�. See Refs. �5,11� for ways to include
this. Fourth, the boundary condition of Eq. �18� should be
specified. In Ref. �4� effects due to permeation of the mem-
brane are included at the outset, but it is later argued that
such effects are negligible for undulations with wavelengths
in the regime relevant to experiments. Since bulk fluid mo-
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tion in the tangential direction of the membrane decouples
from the motion of the membrane shape in the planar case
�see Eq. �A13� here� it is enough to choose n ·U±=n ·�R /�t
to obtain the equations of Ref. �4� that govern the membrane
motion in the experimentally relevant regime. Fifth, diffu-
sion equations for the proteins in the membrane should be set
up. The hydrodynamic attraction proposed in Sec. VI here
can be included simply as a decreased diffusion constant of
the active proteins.

Because of the simplified bulk hydrodynamics in the
Gibbs formulation, this formulation will constitute a much
simpler starting point than the semimicroscopic formulation
for further studies of long-wavelength consequences of the
force-dipole model. This will be applied in another paper
�11�, where the fluctuation spectrum of a quasispherical
vesicle will be derived for the force-dipole model.
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APPENDIX: SOLUTION OF THE SEMIMICROSCOPIC
FORMULATION IN THE PLANAR CASE

In this Appendix we will find the solution of the semim-
icroscopic formulation, Eq. �12�, to first order in deviations
from a planar shape situated at z=0 in a Cartesian coordinate
system �x ,y ,z�.

1. Hydrodynamics without active forces

We need the solution without the active contribution, such
that we have a reference when we wish to find the modifi-
cation due to the activity. To find this solution we will Fou-
rier transform in the plane of the membrane,

v±�x,y,z� =� d2q

�2��2e−i�qxx+qyy�v±,q�z� , �A1�

and decompose the velocity into its z, longitudinal and trans-
verse components as

v±,q = v±,q
z ẑ + v±,q

l q̂ + v±,q
t t̂ , �A2�

where q= �qx ,qy ,0�=qq̂ and t̂ is a unit vector perpendicular
to both of the unit vectors ẑ and q̂. The solution of Eq. �19�
can then be written

v±,q
z = e−q�z���1 + q�z��v±,q

z �z=0 + iqzv±,q
l �z=0� , �A3�

v±,q
l = e−q�z���1 − q�z��v±,q

l �z=0 + iqzv±,q
z �z=0� , �A4�

v±,q
t = e−q�z�v±,q

t �z=0, �A5�

pq
± = 2	qe−q�z�� z

�z�
v±,q

z �z=0 + iv±,q
l �z=0� . �A6�

We will also find the forces T± of the bulk fluids on the
membrane defined in Eq. �24�. To this end we need the stress
tensors

T± = − p±I + 	��v± + ��v±�T� . �A7�

The important components at z=0 are

Tzz
± = − p0

± � 2	� d2q

�2��2e−i�qxxqyy�qv±,q
z �z=0, �A8�

Tzl
± = � 2	� d2q

�2��2e−i�qxx+qyy�qv±,q
l �z=0, �A9�

Tzt
± = � 	� d2q

�2��2e−i�qxx+qyy�qv±,q
t �z=0, �A10�

and they give the forces on the membrane

T�,q
± · q̂ = − 2	qv±,q

l �z=0, �A11�

T�,q
± · t̂ = − 	qv±,q

t �z=0, �A12�

�T± · n�q = � p0
±�2��2��qx���qy� − 2	qv±,q

z �z=0,

�A13�

where T�
±�T± · t�t� is the projection of the forces onto the

tangent space of the membrane.

2. Hydrodynamics with active forces

We will consider the contribution to Eq. �12� from a
single “layer” of active force,

Fact,h = dh�
M

dAFactn�3�r − �R + hn�� . �A14�

Expanding to first order in deviations � from the planar shape
we get

Fact,h = Factdh�ẑ�1 + h��
2� − ��z� − �����z − h� ,

�A15�

where ��= t���. Using this force in the Navier-Stokes equa-
tion �12�, together with the boundary condition that the ve-
locity should vanish at z=0, we get for �z � � �h�

pq
± = F̃act,h,qe−q�h���cosh�qz� − qhe−q�z�� , �A16�

v±,q
z =

1

2	
F̃act,h,qe−q�h��− ze−q�z�qh + �q−1 + �h��sinh�q�z��

− �z�cosh�q�z��� , �A17�

v±,q
l = �

i

2	
F̃act,h,qe−q�h���h − z�sinh�qz� + qhze−q�z��

�A18�

and for �z � � �h�
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pq
± = F̃act,h,qe−q�z���sinh�qh� − qhe−q�h��� , �A19�

v±,q
z =

1

2	
F̃act,h,qe−q�z��− z�qhe−q�h� − sinh�qh��

± �q−1sinh�qh� − h cosh�qh��� , �A20�

v±,q
l = �

i

2	
F̃act,h,qe−q�z���h − z�sinh�qh� + qhe−q�h�z� ,

�A21�

where

F̃act,h = Factdh�1 + h��
2�� , �A22�

and it is assumed that h and z are positive for the “+” part
and negative for the “−” part. For v±,q

t we simply have v±,q
t

=0 everywhere.
We can write Eqs. �A16�–�A21� as

v±,q
z = e−q�z���1 + q�z��v̄±,q

z �z=0 + iqzv̄±,q
l �z=0� + v±,q

z,extra,

�A23�

v±,q
l = e−q�z���1 − q�z��v̄±,q

l �z=0 + iqzv̄±,q
z �z=0� + v±,q

l,extra,

�A24�

pq
± = 2	qe−q�z�� z

�z�
v±,q

z �z=0 + iv±,q
l �z=0� + pq

±,extra, �A25�

where

v̄±,q
z �z=0 = ±

1

2	
F̃act,h,q�q−1sinh�qh� − h cosh�qh�� ,

�A26�

v̄±,q
l �z=0 = � i

1

2	
F̃act,h,qh sinh�qh� , �A27�

and the extra part is zero for �z � � �h� and

v±,q
z,extra = ±

F̃act,h,q

2	
��h − z�cosh�q�z − h�� + q−1sinh�q�z − h��� ,

�A28�

v±,q
l,extra = � i

F̃act,h,q

2	
��h − z�sinh�q�z − h��� , �A29�

pq
±,extra = � F̃act,h,qcosh�q�z − h�� , �A30�

when �z � � �h�. This extra part gives a force on the membrane
which is

Tq
±,extra · ẑ = F̃act,h,q�cosh�qh� − qh sinh�qh�� , �A31�

T�,q
±,extra · q̂ = − iF̃act,h,qqh cosh�qh� . �A32�

Equations �A23�–�A25� should be compared with Eqs.
�A3�–�A6�. Doing this we see that we get the same behavior
in the bulk for �z � � �h� if remove the active force from the
Navier-Stokes equation and instead use the boundary condi-
tions in Eqs. �A26� and �A27�. To second order in h these
boundary conditions are

v̄±,q
z �z=0 = 0, �A33�

v̄±,q
l �z=0 = � iq

1

2	
Fact,h,qdhh2, �A34�

which agrees with the boundary condition in the Gibbs for-
mulation, Eq. �44�.

If the Gibbs formulation is correct, then Eqs. �A31� and
�A32� should match the active force fact from Sec. IV. Ex-
panding Eqs. �A31� and �A32� to second order in h we find

�Tq
+,extra + Tq

−,extra� · ẑ = Fact,h,qdh + 2Fact,h,q=0dhhHq

−
1

2
q2Fact,h,qdhh2, �A35�

�T�,q
+,extra + T�,q

−,extra� · q̂ = − iqFact,h,qdhh − 2iqHqFact,h,q=0dhh2,

�A36�

and again agreement with the Gibbs formulation, Eqs. �33�
and �40�, is found when it is recalled that the monopole
moment of the force Fact vanishes.
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